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Loss of lag synchronization in coupled chaotic systems
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Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting,
nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study
transitions to and between different forms of synchronization for the attractors defined as ‘‘in-phase’’ and
‘‘out-of-phase’’ and investigate the processes by which lag synchronization is lost in two coupled Ro¨ssler
systems. With a small frequency mismatch between the two systems, these processes are related to the
occurrence of a peculiar form of basin structure as more and more periodic orbits embedded into the synchro-
nized chaotic state become unstable in a transverse direction.@S1063-651X~99!03711-3#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Synchronization of chaotic systems has become a sig
cant field of research in recent years. Coupled nonlinear
cillators in chemistry@1#, biology, and economics@2# are
important examples. One of the exciting scientific quarries
this relation is to understand the coherent dynamical beh
ior of the coupled systems. In the technical realm, spr
spectrum communications and systems monitoring and id
tification have been proposed as potential applications
chaotic synchronization, motivating further studies@3#.

Several types of synchronization representing differ
degrees of correlation between the interacting systems h
been identified and are referred to as complete~or full! syn-
chronization@4#, generalized synchronization@5#, and phase
synchronization@6,7#, respectively. Complete synchroniz
tion implies that time series of corresponding dynami
variables of the subsystems coincide completelyx1(t)
5x2(t) ~i.e., the systems oscillate in phase!. Generalized
synchronization, as introduced for drive-response system
defined as the presence of some functional relationship
tween the states of the response and the drive, i.e.,x2(t)
5F@x1(t)#. For phase synchronization, suitably defin
phases of two chaotic oscillators lock to each other, wh
their amplitudes remain uncorrelated and sustain an irreg
motion of their own. Rosenblumet al. @8# have shown that
for stronger coupling a new regime which is called lag sy
chronization may be observed. Lag synchronization app
as a coincidence of the states of two systemsx1(t1t)
5x2(t) when shifted in time. With further increase of th
coupling, this regime tends to complete synchronization. L
synchronization is similar to generalized synchronizat
with the functionF being defined in terms of a tempor
displacement of the dynamics of the interacting subsyste

The loss of chaotic synchronization is directly related
bifurcations of saddle periodic orbits embedded into the c
otic attractor@9–15#. The transitions to nonsynchronous b
havior in systems with symmetric invariant manifolds a
associated with a number of new phenomena, includ
riddled basins of attraction@16# and on-off intermittency
@17#. The orbits embedded in the fully synchronized chao
attractor can lose their transverse stability via a sad
PRE 601063-651X/99/60~6!/6560~6!/$15.00
fi-
s-

n
v-
d
n-
of

t
ve

l

is
e-

e
ar

-
rs

g
n

s.

-

g

c
-

repeller pitchfork bifurcation@10#, a period-doubling bifur-
cation @14#, or a Hopf bifurcation@18#. These bifurcations
may lead to attractor bubbling as described by Ashwinet al.
@19#. Trajectories repelled from the synchronized chao
state may then make an excursion out in phase space. So
or later, however, almost all trajectories will return to th
vicinity of the symmetric subspace. When riddling occurs
dense set of initial conditions which belong to the basin
another attractor appears within the basin of the symme
chaotic attractor@18,19#. A number of issues related to th
influence of asymmetry and noise were discussed in@19#.

Investigations of these synchronization phenomena h
often considered coupled fully identical maps as mathem
cal models. Results obtained in the framework of such i
alizations have then been applied to explain the behavio
real systems. When detuning between the basic frequen
of the interacting oscillators is introduced, regions of chao
phase synchronization, similar to Arnol’d tongues for pe
odic oscillations, appear on the parameter plane. The tra
tion phenomena that take place at the boundary of cha
synchronization are associated with the bifurcations
saddle periodic orbits as well. Anishchenkoet al. @12# have
ascribed this boundary to an accumulation of curves of t
gent bifurcations of saddle cycles, and a more recent st
by Pikovskyet al. @13# suggests that attractor-repeller col
sions take place at the transition to chaotic synchronizat
thus drawing on the analogy with the tangent bifurcation o
limit cycle. Most recently@15#, the transition to phase syn
chronization was described as a boundary crisis mediate
unstable-unstable pair bifurcations on a branched manifo

In this paper, considering the example of two coupl
Rössler systems, we investigate the effect of a freque
mismatch on the synchronization phenomena. Transition
and between complete, lag, and phase synchronization
different regimes are discussed. The process by which
synchronization is lost and phase synchronization takes p
is described in terms of bifurcations of periodic orbits e
bedded into the chaotic attractor.

II. CHARACTERIZING THE SYNCHRONIZATION

Synchronization is a universal nonlinear phenomen
and many of its key features are typically independent of
6560 © 1999 The American Physical Society
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particular model. As an example, we consider a system
coupled Ro¨ssler oscillators as described by Rosenblumet al.
@6#:

ẋ152v1y12z11g~x22x1!,

ẏ15v1x11ay1 ,

ż15b1z1~x12m!,

~1!

ẋ252v2y22z21g~x12x2!,

ẏ25v2x21ay2 ,

ż25b1z2~x22m!,

where the parametersa, b, andm govern the dynamics o
the individual subsystem.g is the coupling parameter,v1
5v01D and v25v02D are the natural frequencies, an
2D is the mismatch between these frequencies.

The above equations serve as a good model for real
tems demonstrating a period-doubling route to chaos, e
for electronic circuits@12,20#, as well as for many chemica
@21# and biological@2# systems.

Since synchronization between two systems invol
phase relations, the notion of the phase for chaotic oscilla
and several methods to characterize the phase dynamics
intensively discussed@6–8#. For the Ro¨ssler system the in
stantaneous phase and amplitude can be conveniently i
duced as@7,21#

FIG. 1. Example of lag synchronization for two coupled Ro¨ssler
systems (a50.165, b50.2, v050.97, m510.0, g50.2, D
50.005). Projections on the plane@x1(t)x2(t)# ~a! and function

Fx1x2
vs v ~b! with similar delayed-coordinate plotsx̃2 andFx1x̃2

~c! and ~d!, respectively.x̃25x2(t1t) andFx1x̃2
5Fx1(t)x2(t1t) .
of

s-
.,

s
rs
ere

ro-

f5arctan
y

x
1pK,K50,6 l ,12, . . . , A5~x21y2!1/2.

~2!

It is easy then to define a phase difference between th
teracting oscillatorsdf(t)5f2(t)2f1(t). If the relation
unf12mf2u,const is fulfilled for some period of time, on
can speak of phase locking. In many instances the we
condition for frequency lockingdV5^ḟ12ḟ2&50 is used.
Here,^ & denotes time average anddV is the difference be
tween the mean angular frequencies.m andn are integers.

To describe the lag synchronization, we have to introd
some relevant measures. An appropriate quantity to ch
terize the time shift in the lag synchronized regime is
cross-spectral density@22#:

Guv~v!5uGuv~v!uej Fuv(v)5E
2`

`

Ruv~t!e2 j vtdt, ~3!

where Ruv(t)5Š@u(t)2^u(t)&#@v(t2t)2^v(t)&#‹ is the
cross-correlation function foru(t) andv(t). If u(t) andv(t)
satisfy the conditionv(t)5u(t2t), then

Fuv~v!5arg„Guv~v!…5vt. ~4!

This implies that time lagt5Fuv(v)/v.
The phenomenon of lag synchronization is clearly de

onstrated in Fig. 1. Here, we have plottedx2(t) versusx1(t)
~a! andFx1x2

versusv ~b!. We observe how the monoton

cally growing functionFx1x2
remains a straight line withi

FIG. 2. Simplified bifurcation diagram for two coupled nonide
tical Rössler systems (a50.165, b50.2, v050.97, m510.0).
Gray-colored regions indicate transitions from periodic solution
chaotic regimes for the out-of-phase family. Dotted curve co
sponds to a period-doubling bifurcation for the saddle cycleC0;
dashed curves denote tangent bifurcations of saddle cycles; d
dashed curve is torus birth bifurcation.
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FIG. 3. ~a! The saddle cycleC0(1), and the saddle 4C0(3) embedded into the chaotic setCA0 (g50.25);~b! the saddle 2C1
s (s) that

appears fromC0 via a period-doubling transition (g50.3); ~c! the saddles 2C1
s(s), 2C1

n (,), and stable cycle 2C1 (m) after a saddle-
node bifurcation (g50.16); and~d! the riddledlike structure (g50.1437). Black dots belong to the basin of the stable quasiperiodic reg
2T1 (a50.165,b50.2, v050.97, m510.0, D50.005).
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the accuracy of the calculation. This allows us to determ
the slope and, hence, the time shiftt. Figure 1 also shows the

reconstructed attractor, i.e.,x̃25x2(t1t) versusx1(t) in the

new symmetric subspacex15 x̃2 ~c! as well as the corre
sponding delayed-coordinate functionFx1x̃2

5Fx1(t)x2(t1t)

~d!. Outside the region of lag synchronization, while s
increasing on the average withv, the functionFx1x2

will

oscillate with some amplitude. Hence, a unique slope can
be defined, and the fully symmetric synchronized attrac
cannot be constructed. Numerically obtained time sh
prove the states of the subsystems to be identical but sh
in time with respect to each other. These results are in ag
ment with results reported by Rosenblumet al. @8#.
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III. DYNAMICS INSIDE THE REGION
OF SYNCHRONIZATION

A. The set of attractors

Many processes in nature are characterized by the c
istence of a large number of attractors for a fixed set
parameters but attainable from different initial conditions.
the presence of weak interaction, the phenomenon of m
stability can be observed in coupled systems which indivi
ally possess only one attractor at fixed parameter values@23–
25#. For two synchronized oscillators whose spectru
contains subharmonicsv0/2k (k51,2,3, . . . ) of the basic
frequency, the phase difference between interacting units
attain 2k different values, i.e.,df52p l , l 50,1,2, . . . ,2k
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21. Hence, a large number of periodic and chaotic attrac
can coexist within a wide range of parameters. We start
study from the case of identical systems (D50). Let us con-
sider attractors from only two families: ‘‘in-phase’’ attracto
for which the phase difference ofx1(t) andx2(t) is zero and
‘‘out-of-phase’’ attractors where the phase difference is 2p.
Denote the periodic attractors as 2kC0 and 2kC1 and the
corresponding chaotic attractors as 2iCA0 and 2iCA1, re-
spectively. Here 2k (k51,2,3, . . . ) represents the cycle pe
riod, normalized in terms of the single period-1 solutionC0
which originally exists in the system; 2i ( i 50,1,2, . . . ) rep-
resents the number of bands for the chaotic attractors.

With D50, asm is increased the system~1! demonstrates
a cascade of period-doubling bifurcations of periodic orb
2kC0 leading to the formation of a chaotic attractor in t
symmetric subspace. With further increase ofm, band-
merging bifurcations of the chaotic attractors 2iCA0 take
place. All of these attractors are located in the symme
subspace of the whole phase space of the system. This
responds to the case of complete synchronization. The
tual entrainment of periodic oscillations 2C1 which is sym-
metric under the coordinate transformatio
(x1 ,x2)↔(x2 ,x1); (y1 ,y2)↔(y2 ,y1); (z1 ,z2)↔(z2 ,z1)

FIG. 4. The distributionP of momentary phase differences~a! at
g50.205 along the directionA in Fig. 2 for D50.02; 0.03; 0.04;
0.045; 0.05~from the right to the left! and~b! at D50.02 along the
directionB in Fig. 2 forg50.142; 0.14; 0.139; 0.09; 0.04~from the
right to the left! (a50.165,b50.2, v050.97, m510.0).
rs
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can be viewed as a particular case of lag synchroniza
corresponding to a time shift of half a period between
above states. A sequence of bifurcations of this attrac
leads to the appearance of high-periodic solutions and c
otic attractors 2iCA1 which are phase locked but situate
outside the symmetric subspace.

For the nonidentical case (DÞ0), Anishchenkoet al. @26#
have shown that regions of chaotic synchronization such
Arnol’d tongues exist. Inside these regions a gradual tra
tion from complete to lag synchronization for ‘‘in-phase
attractors takes place. ‘‘Out-of-phase’’ solutions demonstr
phase coherence properties, but for these solutions full
herence cannot be achieved. Moreover, ‘‘out-of-phase’’
tractors seem to remain structurally stable over a longer
terval of frequency mismatch. Hence, the transition
nonsynchronous behavior is determined by the loss of sta
ity for the ‘‘out-of-phase’’ synchronized mode.

B. Transition from lag to phase synchronization

The case of a small mismatch

Let us consider how the set of attractors reconstructs it
in the process of loss of lag synchronization when the c
pling is changed. Figure 2 shows the bifurcation diagram
the synchronous solution on the (D,g) parameter plane
Throughout this section the symmetric subspace is con
ered in lag coordinates, that is,x1(t)5x2(t1t).

With a small mismatch, the boundary of chaotic pha
synchronization is located in the region of accumulation
curves of tangent bifurcations of saddle cycles~family of
dashed curves in the lower left corner of Fig. 2!. At high
values of the coupling strength there exists the regime of
synchronization which is stable to perturbations. With d
creasing of the coupling, this state becomes sensitive
small intensity noise. Excursions from the ‘‘synchronou
attractor is observed. Then bursts of this behavior gradu
become stronger and are observed even without noise
this moment lag synchronization is no longer observ
When coupling is further decreased, the second Lyapu
exponent becomes positive. Hence, a transition to hyp
chaos occurs. We are interested in the bifurcations that ca
these transitions.

Let us consider the mechanism of loss of synchronizat
from the point of view of bifurcations of saddle period
orbits embedded into the chaotic attractor. We fix the m
match between the basic frequencies atD50.005 and inves-
tigate the transitions between the various regimes when
coupling strength is decreased~the directionD in Fig. 2!.
The periodic orbitsC0 and 2kC0 are of saddle type and de
termine the structure ofCA0 @Fig. 3~a!#. At g50.239~dotted
curve in Fig. 2! the saddle cycleC0 undergoes a period
doubling bifurcation. As a result,C0 loses its stability in a
direction transverse to the synchronization manifold an
saddle period-2 cycle 2C1

s softly appears in its vicinity.
When the coupling is further decreased, the points in
Poincare´ section of this cycle move away from the symme
ric subspace@Fig. 3~b!#. At g50.1657, a saddle-node bifur
cation ~boundary of the light gray region in Fig. 2! takes
place leading to the formation of a stable asymme
period-2 cycle. In the neighborhood of the saddle perio
orbit 2C1

s the stable periodic orbit 2C1 and a saddle periodic
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orbit 2C1
n appear@Fig. 3~c!#. From some initial conditions

near the chaotic attractorCA0, the trajectory converges t
2C1. However, the length of this transient is very sensitive
the initial conditions. When this happens, a basin of attr
tion of phase trajectories by 2C1 is formed. The immediate
basin has a tonguelike shape and is bounded by the s
manifolds of the saddle cycles 2C1

s and 2C1
n .

At lower values of the coupling, a similar transverse d
stabilization takes place for other periodic cycles such
4C0 and 8C0 and several of these subsequently underg
saddle-node bifurcation. In this way, a set of tongues app
step by step and the basin of attraction ofCA0 becomes
riddled by initial conditions from which trajectories move
the stable regime out of the symmetric subspace@Fig. 3~d!#.
At g50.1443, a torus develops from 2C1 ~dark gray region
in Fig. 2!. At this moment, noise of small intensity induce
the escape from attractorCA0. When the coupling is furthe
decreased,CA1 appears via bifurcations of resonant cycl
~the black region in Fig. 2! to subsequently become unstab
in a boundary crisis. Chaos-chaos intermittency betw
CA0 and CA1 then is observed, and lag synchronization
lost. The chaotic attractorCA0 and the chaotic saddle se
merge, and hyperchaos arises.

A similar sequence of bifurcations is observed in a w
range of frequency mismatch~until D50.01). At these val-
ues ofD, a tangent bifurcation of the higher periodic cycl
(4C1 and 8C1) takes place and chaosCA1 appears via a
sequence of period doubling bifurcations.

The case of a large mismatch

At large values of the frequency mismatch the region
synchronization is bounded downwards by the curve of to
birth bifurcation where two complex-conjugate multiplie
cross the unit circle~dotted-dashed curve in Fig. 2!. Follow-
ing the lag synchronized attractor, one observes that th
gradually transformed into the phase-synchronized attra
CA0. Figure 4~a! shows how the distribution of instanta
neous phase differences changes gradually when the
quency mismatch is increased~direction A in Fig. 2!. The
rightmost distribution with the highest maxima and t
smallest widths corresponds toD50.02, and the other distri
butions with lower maxima and broader width correspon
ce

o

.

I.
-

ble

-
s
a
rs

n

f
s

is
or

re-

s

to D50.03, 0.04, 0.045, and 0.05. But for any frequen
mismatch there is a coupling interval where lag synchro
zation occurs. This is to be compared with the case where
lag synchronized regime is immediately destroyed~direction
B in Fig. 2!. Under these conditions the distribution of pha
differences abruptly changes its form when chaos-chaos
termittency appears atg50.139@Fig. 4~b!#.

Note that, in contrast to the case of a weak misma
when frequency~and phase! locking takes place, synchroni
zation in the case of a large mismatch is related to the s
pression of oscillations of one of the coupled subsystems
the signal of the other subsystem. Therefore, the evolutio
the lag attractor is different in the two cases, but this qu
tion needs further investigations.

IV. CONCLUSIONS

In this paper we have studied the effect of mutual sy
chronization of self-sustained oscillations in coupled Ro¨ssler
systems whose natural frequencies are different. Based
the results of computer simulation, we demonstrated tha
regime of complete synchronization for ‘‘in-phase’’ attra
tors is transferred into a lag regime when a frequency m
match is introduced while ‘‘out-of-phase’’ attractors rema
phase synchronized. With decreasing coupling, the loss
lag synchronization is related to a sequence of bifurcation
saddle cycles embedded into the chaotic attractor and to
furcations of ‘‘out-of-phase’’ attractors. Reconstructing t
lag synchronized attractor, we found an analogy to the l
of complete synchronization via a riddling transition for th
case of identical oscillators. We believe that different form
of synchronization which are related to different attracti
sets coexisting in a parameter space of a system can fi
number of practical applications in description, for examp
of biological systems that contain a large number of comp
oscillators.
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